缺血性疾病包括缺血性心脏病、缺血性脑疾病和外周动脉疾病,以组织器官缺血缺氧所致的血流限制或阻塞为特征。部分内皮细胞-间充质转化 (EndMT) 是在生理性血管生成过程中观察到的一种中间表型,内皮细胞正在向间质状态转变以支持新生血管形成。2024年1月8日Cell子刊The Innovation杂志发表了来自复旦大学附属中山医院心脏病全国重点实验室葛均波院士/李华研究员团队的一项题名“GTF2H4 regulates partial EndMT via NF-κB activation through NCOA3 phosphorylation in ischemic diseases”的研究论文。作者鉴定了EndMT过程中转录因子GTF2H4可以与ERCC3协同发挥作用,并采用磷酸化蛋白质组学联合信号通路磷酸化抗体芯片(达吉特提供此芯片检测服务)检测了关键信号通路上蛋白表达及其磷酸化变化,发现了GTF2H4参与了NCOA3蛋白的丝氨酸磷酸化,促进了NCOA3和p65之间的相互作用,导致了部分EndMT过程中NF-kB/Snail信号轴的转录激活,揭示了靶向GTF2H4在组织修复方面的前景,并为治疗缺氧/缺血性疾病提供了潜在的机会。
01 GTF2H4促进缺氧诱导的部分EndMT
研究首先发现了小鼠心肌梗死后梗死边缘区内皮细胞会逐渐表达间充质标记物α-SMA,体外实验中微血管内皮细胞经缺氧处理后也表达α-SMA、Fibronectin等间充质标记物,并且内皮细胞标记物CD31和VE-Cadherin部分丢失,表明缺血缺氧诱导内皮细胞发生了部分EndMT(图1)。
图1 缺血/缺氧诱导部分EndMT
研究团队基于前期转录组测序结合GTEx数据库的相关研究结果,发现了对缺氧信号显著响应的一个转录因子GTF2H4。证明了缺氧显著减弱内皮细胞中GTF2H4表达水平,rescue实验证明了GTF2H4能够缓解缺氧诱导的微血管内皮细胞损伤,并促进缺氧诱导的部分EndMT。细胞实验进一步验证了GTF2H4可以促进细胞迁移并抑制体外血管生成(图2)。
图2 GTF2H4促进缺氧诱导的部分EndMT
02 GTF2H4和ERCC3协调调控部分EndMT
为了揭示GTF2H4调控部分EndMT的分子机制,研究团队通过蛋白质组学发现了GTF2H4可以调控ERCC3蛋白的表达。GTF2H4并没有改变ERCC3转录水平,说明了GTF2H4影响了ERCC3蛋白的稳定性。之前的研究表明了GTF2H4和ERCC3是TFIIH转录复合体的两个关键组成蛋白,GTF2H4含有ERCC3结合的序列。CO-IP实验也证明了GTF2H4和ERCC3相互作用。研究还发现了GTF2H4通过自噬介导的降解路径调控ERCC3蛋白的稳定性。功能实验证明了部分EndMT的调控依赖于GTF2H4和ERCC3之间的互作(图3)。
图3 GTF2H4和ERCC3协同调控部分EndMT
03 GTF2H4通过NF-kB信号轴促进低氧诱导的部分EndMT
为了研究GTF2H4调控部分EndMT下游相关的信号分子和通路,研究者首先通过磷酸化蛋白质组学发现了差异磷酸化的多肽主要富含在丝裂原活化蛋白激酶的机制靶点Hippo、NF-κB和Notch信号通路中,所有这些都与EndMT相关。由于NF-κB信号通路对与内皮细胞活性、血管生成非常重要,研究者利用了 NF-κB信号通路磷酸化抗体芯片分析了GTF2H4是否通过NF-κB信号调节缺氧诱导的部分EndMT。磷酸化抗体芯片分析发现了过表达GTF2H4显著增加p65蛋白Ser536激活位点的磷酸化,而GTF2H4基因敲除降低了IκB 和IKK的磷酸化(图4)。随后通过双荧光素酶、EMA等实验得出GTF2H4主要通过NF-κB信号通路调控部分EndMT。
图4 磷酸化抗体芯片发现了GTF2H4调控NF-κB信号关键的蛋白磷酸化
最后研究者发现了GTF2H4能够促进NCOA3上1330位点的丝氨酸发生磷酸化,进而结合p65以激活NF-κB/Snail通路,促进部分EndMT的作用机制。
图5 GTF2H4通过NCOA3 S1330位点的磷酸化调控NF-κB激活的部分EndMT
总结与讨论
这篇文章使用了磷酸化抗体芯片和蛋白质谱技术分析发现GTF2H4通过NF-κB信号调节缺氧诱导的部分EndMT的分子机制。揭示了部分内皮间质化在缺血性疾病血管新生中的关键作用,并首次在体内外阐明转录因子GTF2H4能够通过NCOA3/NF-κB/Snail通路促进缺血缺氧诱导的部分内皮间质化,改善缺血后血运重建和组织修复,通过探索血管生成与部分EndMT之间的重叠生物学行为,以确定临床促进血管生成的治疗策略。
|达吉特提供多通路和单通路多种类型的芯片检测服务
达吉特提供近30款信号通路磷酸化抗体芯片,覆盖大多数的经典信号通路。这些芯片既包括能够系统检测单条通路的专业芯片,如:MAPK、Apoptosis、CREB通路芯片等,也包括能够对多条信号通路进行广泛筛选的PEX100和CSP100芯片等,能够帮助大家快速高效的锁定关键信号通路
达吉特专注于药靶研究,可为您寻找药物靶点提供多种多样的专业的技术服务和解决方案,助您解决药物靶点-机理研究中的各种难题。
达吉特针对于中药及小分子药物研究,建立了一套完整的技术服务体系:
1)中药/复方的有效成分高精度鉴定;
2)中药有效成分与代谢物组织空间分布
3)小分子化合物批量标记(生物素/炔基/荧光)
4)小分子钓靶(标记法):20K人类蛋白组芯片/ ABPP
5)小分子钓靶(非标记法):DARTS /Lip-MS/ CETSA
6)膜蛋白靶点筛选技术:SPIDER / MPA
7)药物调控通路筛选:磷酸化抗体芯片/磷酸化蛋白组
8)SPR表面等离子共振(分子动力学)
9) 药-靶结合位点分析(高分辨质谱/分子对接)
10) PET-CT与药物分布小动物活体成像
11)天然产物化合物库筛选